Notes on the correlation between a function and its derivative or first difference

Richard Kennaway

We demonstrate the absence of correlation between a function satisfying certain weak boundedness conditions and its first derivative. Before attending to the technicalities, we note that the proofs for both theorems are almost immediate from the observation that $\int_a^b x \dot{x} dt = [\frac{1}{2}x^2]_a^b$.

THEOREM 1 Let x be a differentiable real function, defined in the interval [a,b], such that x(a) = x(b). If x is not constant then the correlation of x and \dot{x} over [a,b] is defined and equal to zero.

PROOF. Write $\overline{x}_{a,b}$ and $\overline{x}_{a,b}$ for the means of x and \dot{x} over [a, b]. By replacing x by $x - \overline{x}_{a,b}$ we may assume without loss of generality that $\overline{x}_{a,b}$ is zero. $\overline{x}_{a,b}$ must exist and equal zero, since

$$\overline{\dot{x}}_{a,b} = \frac{1}{b-a} \int_{a}^{b} \dot{x} \, dt = \frac{x(b) - x(a)}{b-a} = 0$$

The correlation between x and \dot{x} over [a, b] is defined by:

$$c_{x,\dot{x}} = \frac{\frac{1}{b-a} \int_{a}^{b} x \,\dot{x} \,dt}{\sqrt{\left(\frac{1}{b-a} \int_{a}^{b} x^{2} \,dt\right) \left(\frac{1}{b-a} \int_{a}^{b} \dot{x}^{2} \,dt\right)}}$$
$$= \frac{(x(b)^{2} - x(a)^{2})/2}{\sqrt{\left(\int_{a}^{b} x^{2} \,dt\right) \left(\int_{a}^{b} \dot{x}^{2} \,dt\right)}}$$

The numerator is zero and the denominator is positive (since neither x nor \dot{x} is identically zero). Therefore $c_{x,\dot{x}} = 0$.

THEOREM 2 Let x be a differentiable real function. Let \overline{x} and $\overline{\dot{x}}$ be the averages of x and \dot{x} over the whole real line. If these averages exist, and if the correlation of x and \dot{x} over the whole real line exists, then the correlation is zero.

PROOF. Note that the existence of the correlation implies that x is not constant. As before, we can take \overline{x} to be zero and prove that \overline{x} is also zero. The correlation between x and \dot{x} is then given by the limit:

$$c_{x,\dot{x}} = \lim_{a \to -\infty, b \to \infty} \frac{\frac{1}{b-a} \int_{a}^{b} x \, \dot{x} \, dt}{\sqrt{\left(\frac{1}{b-a} \int_{a}^{b} x^{2} \, dt\right) \left(\frac{1}{b-a} \int_{a}^{b} \dot{x}^{2} \, dt\right)}}$$

=
$$\lim_{a \to -\infty, b \to \infty} \frac{(x(b)^{2} - x(a)^{2})/2}{\sqrt{\left(\int_{a}^{b} x^{2} \, dt\right) \left(\int_{a}^{b} \dot{x}^{2} \, dt\right)}}$$

Since this limit is assumed to exist, to prove that it is zero it is sufficient to construct some particular sequence of values of a and b tending to $\pm \infty$, along which the limit is zero.

Either x(b) tends to zero as $b \to \infty$, or (since $\overline{x} = 0$ and x is continuous) there are arbitrarily large values of b for which x(b) = 0. In either case, for any $\epsilon > 0$ there exist arbitrarily large values of b such that $|x(b)| < \epsilon$. Similarly, there exist arbitrarily large negative values a such that $|x(a)| < \epsilon$. For such a and b, the numerator of the last expression for $c_{x,\dot{x}}$ is less than $\epsilon^2/2$. However, the denominator is positive and non-decreasing as $a \to -\infty$ and $b \to \infty$. The denominator is therefore bounded below for all large enough a and b by some positive value δ .

If we take a sequence ϵ_n tending to zero, and for each ϵ_n take values a_n and b_n as described above, and such that $a_n \to -\infty$ and $b_n \to \infty$, then along this route to the limit, the corresponding approximant to the correlation is less than ϵ_n/δ . This sequence tends to zero, therefore the correlation is zero.

The conditions that x(a) = x(b) in the first theorem and the existence of \overline{x} in the second are essential. If we take $x = e^t$, which violates both conditions, then $\dot{x} = x$ and the correlation is 1 over every finite time interval. That $\overline{\dot{x}}$ and $c_{x,\dot{x}}$ exist is a technicality that rules out certain pathological cases such as $x = \sin(\log(1 + |t|))$, which are unlikely to arise in any practical application.

Both theorems have finite difference versions for time series. They hold for essentially the same reason as the continuous versions: that $(x_i + x_{i+1})(x_{i+1} - x_i) = x_{i+1}^2 - x_i^2$. The proofs are easily obtained from those above.