
Notes on the correlation between a function and its

derivative or first difference

Richard Kennaway

We demonstrate the absence of correlation between a function satisfy-
ing certain weak boundedness conditions and its first derivative. Before
attending to the technicalities, we note that the proofs for both theorems
are almost immediate from the observation that

∫ b
a x ẋ dt = [12x

2]ba.

Theorem 1 Let x be a differentiable real function, defined in the interval
[a, b], such that x(a) = x(b). If x is not constant then the correlation of x
and ẋ over [a, b] is defined and equal to zero.

Proof. Write xa,b and ẋa,b for the means of x and ẋ over [a, b]. By replacing
x by x−xa,b we may assume without loss of generality that xa,b is zero. ẋa,b
must exist and equal zero, since

ẋa,b =
1

b− a

∫ b

a
ẋ dt =

x(b)− x(a)

b− a
= 0

The correlation between x and ẋ over [a, b] is defined by:

cx,ẋ =
1

b−a
∫ b
a x ẋ dt√

( 1
b−a

∫ b
a x

2 dt) ( 1
b−a

∫ b
a ẋ

2 dt)

=
(x(b)2 − x(a)2)/2√
(
∫ b
a x

2 dt) (
∫ b
a ẋ

2 dt)

The numerator is zero and the denominator is positive (since neither x nor
ẋ is identically zero). Therefore cx,ẋ = 0.

Theorem 2 Let x be a differentiable real function. Let x and ẋ be the
averages of x and ẋ over the whole real line. If these averages exist, and if
the correlation of x and ẋ over the whole real line exists, then the correlation
is zero.
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Proof. Note that the existence of the correlation implies that x is not
constant. As before, we can take x to be zero and prove that ẋ is also zero.
The correlation between x and ẋ is then given by the limit:

cx,ẋ = lim
a→−∞, b→∞

1
b−a

∫ b
a x ẋ dt√

( 1
b−a

∫ b
a x

2 dt) ( 1
b−a

∫ b
a ẋ

2 dt)

= lim
a→−∞, b→∞

(x(b)2 − x(a)2)/2√
(
∫ b
a x

2 dt) (
∫ b
a ẋ

2 dt)

Since this limit is assumed to exist, to prove that it is zero it is sufficient
to construct some particular sequence of values of a and b tending to ±∞,
along which the limit is zero.

Either x(b) tends to zero as b→∞, or (since x = 0 and x is continuous)
there are arbitrarily large values of b for which x(b) = 0. In either case,
for any ε > 0 there exist arbitrarily large values of b such that |x(b)| < ε.
Similarly, there exist arbitrarily large negative values a such that |x(a)| < ε.
For such a and b, the numerator of the last expression for cx,ẋ is less than
ε2/2. However, the denominator is positive and non-decreasing as a→ −∞
and b → ∞. The denominator is therefore bounded below for all large
enough a and b by some positive value δ.

If we take a sequence εn tending to zero, and for each εn take values an
and bn as described above, and such that an → −∞ and bn →∞, then along
this route to the limit, the corresponding approximant to the correlation is
less than εn/δ. This sequence tends to zero, therefore the correlation is
zero.

The conditions that x(a) = x(b) in the first theorem and the existence
of x in the second are essential. If we take x = et, which violates both
conditions, then ẋ = x and the correlation is 1 over every finite time interval.
That ẋ and cx,ẋ exist is a technicality that rules out certain pathological cases
such as x = sin(log(1 + |t|)), which are unlikely to arise in any practical
application.

Both theorems have finite difference versions for time series. They
hold for essentially the same reason as the continuous versions: that (xi +
xi+1)(xi+1 − xi) = x2i+1 − x2i . The proofs are easily obtained from those
above.
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