Notes on the correlation between a function and its
derivative or first difference

Richard Kennaway

We demonstrate the absence of correlation between a function satisfy-
ing certain weak boundedness conditions and its first derivative. Before
attending to the technicalities, we note that the proofs for both theorems
are almost immediate from the observation that [ ; zidt = [322]5.
THEOREM 1 Let x be a differentiable real function, defined in the interval
[a,b], such that x(a) = z(b). If x is not constant then the correlation of x
and & over [a,b] is defined and equal to zero.

Proor. Write 7,5 and E&b for the means of x and & over [a, b]. By replacing
x by x — T, we may assume without loss of generality that T, ; is zero. Ea,b
must exist and equal zero, since
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The correlation between x and & over [a, b] is defined by:
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The numerator is zero and the denominator is positive (since neither x nor
& is identically zero). Therefore ¢, ; = 0.

THEOREM 2 Let x be a differentiable real function. Let T and & be the
averages of x and & over the whole real line. If these averages exist, and if
the correlation of x and & over the whole real line exists, then the correlation
18 zero.



PROOF. Note that the existence of the correlation implies that x is not
constant. As before, we can take T to be zero and prove that  is also zero.
The correlation between x and & is then given by the limit:
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Since this limit is assumed to exist, to prove that it is zero it is sufficient
to construct some particular sequence of values of @ and b tending to £oo,
along which the limit is zero.

Either x(b) tends to zero as b — oo, or (since T = 0 and x is continuous)
there are arbitrarily large values of b for which z(b) = 0. In either case,
for any € > 0 there exist arbitrarily large values of b such that |z(b)| < e.
Similarly, there exist arbitrarily large negative values a such that |z(a)| < e.
For such a and b, the numerator of the last expression for ¢, ; is less than
€2/2. However, the denominator is positive and non-decreasing as a — —oc
and b — o0o. The denominator is therefore bounded below for all large
enough a and b by some positive value 9.

If we take a sequence ¢, tending to zero, and for each ¢, take values a,
and b,, as described above, and such that a,, -+ —oco and b,, — oo, then along
this route to the limit, the corresponding approximant to the correlation is
less than ¢,/0. This sequence tends to zero, therefore the correlation is
zZero.

The conditions that z(a) = x(b) in the first theorem and the existence
of T in the second are essential. If we take z = e, which violates both
conditions, then & = x and the correlation is 1 over every finite time interval.
That # and ¢, ; exist is a technicality that rules out certain pathological cases
such as x = sin(log(1 + |¢])), which are unlikely to arise in any practical
application.

Both theorems have finite difference versions for time series. They
hold for essentially the same reason as the continuous versions: that (z; +
Ti1)(Tig1 — @) = 27 1~ x?. The proofs are easily obtained from those
above.



